The Structure of C∗-extreme Points in Spaces of Completely Positive Linear Maps on C∗-algebras

نویسندگان

  • DOUGLAS R. FARENICK
  • HONGDING ZHOU
چکیده

If A is a unital C∗-algebra and if H is a complex Hilbert space, then the set SH(A) of all unital completely positive linear maps from A to the algebra B(H) of continuous linear operators on H is an operator-valued, or generalised, state space of A. The usual state space of A occurs with the one-dimensional Hilbert space C. The structure of the extreme points of generalised state spaces was determined several years ago by Arveson [Acta Math. 123(1969), 141-224]. Recently, Farenick and Morenz [Trans. Amer. Math. Soc. 349(1997), 1725-1748] studied generalised state spaces from the perspective of noncommutative convexity, and they obtained a number of results on the structure of C∗-extreme points. This work is continued in the present paper, and the main result is a precise description of the structure of the C∗extreme points of the generalised state spaces of A for all finite-dimensional Hilbert spaces H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C*-Extreme Points and C*-Faces oF the Epigraph iF C*-Affine Maps in *-Rings

Abstract. In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove som...

متن کامل

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

متن کامل

Additive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements

Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...

متن کامل

A RADON-NIKODYM THEOREM FOR COMPLETELY n-POSITIVE LINEAR MAPS ON PRO-C-ALGEBRAS AND ITS APPLICATIONS

The order relation on the set of completely n-positive linear maps from a pro-C-algebra A to L(H), the C-algebra of bounded linear operators on a Hilbert space H, is characterized in terms of the representation associated with each completely n-positive linear map. Also, the pure elements in the set of all completely n-positive linear maps from A to L(H) and the extreme points in the set of uni...

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998